Novel Estimation of the Thermal Conductivity of Superconducting Niobium

S. K. Chandrasekaran, N. T. Wright, J. V. Beck

Department of Mechanical Engineering Michigan State University

2009 Inverse Problem Symposium

Chandrasekaran et al. (Michigan State Univ.)

Conductivity of Nb

- Superconducting Radio Frequency (SRF) cavities accelerate charged particles to 5 to 80% of *c* using an RF electric field
- Niobium is used to construct SRF cavities due to its high *T_c* (9.25 K)
- SRF cavities usually operate at 2 to 4.2 K

Power dissipation

- The RF field induces magnetic field inside the cavity
- The magnetic field heats the inner surface of the cavity wall
- The heat needs to be dissipated into surrounding liquid helium to maintain the bulk temperature below T_c
- Imperfections in the Nb surface result in local heating

$$\frac{\int_{\Delta x} \frac{B_{s} \sin(\omega t)}{Mb} + \Delta T_{k} + \Delta T_{k}}{\Delta T_{k} = q} \Delta x / k}$$

Thermal Conductivity of Superconducting Nb

Conduction in Nb at these temperatures is a function of

- o purity
- imperfection density
- grain orientation
- grain boundaries

- E - N

Temperature data

- Points represent thermistor temperature measurements.
- Dotted lines assume uniform conductivity between the sensors.

Each experiment yields a thermal conductivity estimated by

$$k = -rac{q''}{dT/dx}$$

..

To make simultaneous use of all temperature measurements, an alternate model to estimate conductivity is proposed.

- A set of *m* temperatures *T_p* are specified
- Thermal conductivity \hat{k}_p is estimated at \bar{T}_p

Fourier Law is,

$$q'' = -k_{avg}\frac{dT}{dx} \tag{1}$$

Assuming a linear variation of k_{avg} with respect to T,

$$k_{avg} = \hat{k}_{\rho} + \left(\frac{\left(\frac{T_{i,j}+T_{i,j+1}}{2}\right) - \bar{T}_{\rho}}{\bar{T}_{\rho+1} - \bar{T}_{\rho}}\right) (\hat{k}_{\rho+1} - \hat{k}_{\rho})$$
(2)

where $T_{i,j}$ is the measured temperature for i^{th} experiment and j^{th} sensor location, and is assumed to be known and error-less. $T_{i,j+1}$ is the temperature at sensor location j + 1, which is to be estimated.

Hence, Eq. 1 can be re-written as

$$q_{i}^{\prime\prime} = \frac{T_{i,j} - T_{i,j+1}}{dx} \left(\hat{k}_{\rho} + \frac{\left(\frac{T_{i,j} + T_{i,j+1}}{2}\right) - \bar{T}_{\rho}}{\bar{T}_{\rho+1} - \bar{T}_{\rho}} (\hat{k}_{\rho+1} - \hat{k}_{\rho}) \right)$$
(3)

Re-arranging Eq. 3, gives a quadratic in $T_{i,j+1}$

$$A(T_{i,j+1})^2 + B(T_{i,j+1}) + C = 0$$
(4)

where,

$$A = \frac{\hat{k}_{p+1} - \hat{k}_p}{2(\bar{T}_{p+1} - \bar{T}_p)} \qquad B = \hat{k}_p - \frac{\bar{T}_p(\hat{k}_{p+1} - \hat{k}_p)}{\bar{T}_{p+1} - \bar{T}_p}$$
$$C = q''_i dx - T_{i,j} \hat{k}_p - \frac{T_{i,j}(T_{i,j} - 2\bar{T}_i)(\hat{k}_{p+1} - \hat{k}_p)}{2(\bar{T}_{p+1} - \bar{T}_p)}$$

The solution for Eq. 4 is

$$T_{i,j+1} = \frac{-B \pm \sqrt{B^2 - 4AC}}{2A}$$

Chandrasekaran et al. (Michigan State Univ.)

イロト イポト イヨト イヨト

 $T_{i,j}$ may also be written as a Taylor series expansion, i.e.

$$T_{i,j}^{(z+1)} = T_{i,j}^{(z)} \Big|_{\hat{k}_{1}^{(z)}, \, \hat{k}_{2}^{(z)}, ..., \, \hat{k}_{m}^{(z)}} + \frac{\partial T_{i,j}^{(z)}}{\partial \hat{k}_{1}} \Big|_{\hat{k}_{2}^{(z)}, \, \hat{k}_{3}^{(z)}, ..., \, \hat{k}_{m}^{(z)}} \left(\hat{k}_{1}^{(z+1)} - \hat{k}_{1}^{(z)} \right) + \frac{\partial T_{i,j}^{(z)}}{\partial \hat{k}_{2}} \Big|_{\hat{k}_{1}^{(z)}, \, \hat{k}_{3}^{(z)}, ..., \, \hat{k}_{m}^{(z)}} \left(\hat{k}_{2}^{(z+1)} - \hat{k}_{2}^{(z)} \right) + ... + \frac{\partial T_{i,j}^{(z)}}{\partial \hat{k}_{m}} \Big|_{\hat{k}_{1}^{(z)}, \, \hat{k}_{2}^{(z)}, ..., \, \hat{k}_{m}^{(z)}} \left(\hat{k}_{m}^{(z+1)} - \hat{k}_{m}^{(z)} \right) \right)$$

$$(5)$$

Chandrasekaran et al. (Michigan State Univ.)

IPS '09 9 / 15

イロト イポト イヨト イ

The sensitivity coefficients are determined numerically by

$$\frac{\partial T_{i,j}(x, \hat{k}_1^{(z)}, \dots, \hat{k}_m^{(z)})}{\partial \hat{k}_m} \approx \frac{T_{i,j}(x, \hat{k}_1^{(z)}, \dots, d * \hat{k}_m^{(z)}) - T_{i,j}(x, \hat{k}_1^{(z)}, \dots, \hat{k}_m^{(z)})}{d * \hat{k}_m^{(z)} - \hat{k}_m^{(z)}}$$
(6)

where d = 1.0001, as an example.

The sum of squares with Tikhonov regularization is

$$S_{T} = \sum_{i=1}^{r} \sum_{j=1}^{\ell} (Y_{i,j} - T_{i,j}^{(z+1)})^{2} + \alpha_{T} \sum_{p=1}^{m} (\hat{k}_{p+1}^{(z+1)} - \hat{k}_{p}^{(z+1)})^{2}$$
(7)

Partially differentiating with respect to each k_p and setting equal to zero,

$$\frac{\partial S_T}{\partial \hat{k}_p} = -2\sum_{i=1}^r \sum_{j=1}^\ell (Y_{i,j} - T_{i,j}^{(z+1)}) \left(\frac{\partial T_{i,j}^{(z+1)}}{\partial k_p}\right) - 2\alpha_T \Delta \hat{k}_p^{(z+1)} = 0 \quad (8)$$

where

$$\Delta \hat{k}_{p}^{(z+1)} = \begin{cases} \hat{k}_{p}^{(z+1)} - \hat{k}_{p+1}^{(z+1)} & \text{if } p = 1\\ \hat{k}_{p-1}^{(z+1)} - 2\hat{k}_{p}^{(z+1)} + \hat{k}_{p+1}^{(z+1)} & \text{if } 1$$

< 回 ト < 三 ト < 三

Linearizing Eq. 8 in terms of the corrections in the $(z + 1)^{st}$ iteration gives

$$\sum_{i=1}^{r} \sum_{j=1}^{\ell} \left(Y_{i,j} - T_{i,j}^{(z)} - \sum_{s=1}^{m+1} \frac{\partial T_{i,j}^{(z)}}{\partial \hat{k}_s} \Delta \hat{k}_s^{(z)} \right) \frac{\partial T_{i,j}^{(z)}}{\partial \hat{k}_p} + 2\alpha_T \Delta \hat{k}_p^{(z+1)} = 0 \quad (9)$$

where

$$\Delta \hat{k}_{s}^{(z)} = \hat{k}_{s}^{(z+1)} - \hat{k}_{s}^{(z)}$$

and $\Delta \hat{k}_{p}^{(z+1)}$ as defined before.

A set of simultaneous algebraic equations for p = 1, 2, ..., m is constructed from Eq. 9 and solved for the $(z + 1)^{st}$ iteration for the thermal conductivity parameters.

向下 イヨト イヨト

Comparison of Estimates

- \hat{k}_p estimates compare well with k
- Tikhonov regularization parameter $\alpha = 10^{-8}$ for this estimation

- New method provides a means for describing complex behavior
- Agrees well with point-wise estimation of k
- Readily expandable to include more \overline{T}_{ρ} and \hat{k}_{ρ}
- Tikhonov parameter is small, as expected for small number of parameters
- Could be used for other phenomena that have no known physical model

Funding:

- Department of Energy (Fermi Laboratory)
- National Superconducting Cyclotron Laboratory

Collaborators:

- Chris Compton, National Superconducting Cyclotron Laboratory
- Walter Hartung, National Superconducting Cyclotron Laboratory
- Tom Bieler, Material Science and Engineering, Michigan State University
- Derek Baars, Material Science and Engineering, Michigan State University

* @ ト * ヨ ト * ヨ