
Novel Estimation of the Thermal Conductivity of
Superconducting Niobium

S. K. Chandrasekaran, N. T. Wright, J. V. Beck

Department of Mechanical Engineering
Michigan State University

2009 Inverse Problem Symposium

Chandrasekaran et al. (Michigan State Univ.) Conductivity of Nb IPS ‘09 1 / 15



Basic Function of Accelerator

Superconducting Radio
Frequency (SRF) cavities
accelerate charged particles to
5 to 80% of c using an RF
electric field
Niobium is used to construct
SRF cavities due to its high
Tc (9.25 K)
SRF cavities usually operate
at 2 to 4.2 K
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Power dissipation

The RF field induces magnetic field inside the cavity
The magnetic field heats the inner surface of the cavity wall
The heat needs to be dissipated into surrounding liquid helium to
maintain the bulk temperature below Tc

Imperfections in the Nb surface result in local heating
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Thermal Conductivity of Superconducting Nb

Conduction in Nb at these
temperatures is a function
of

purity
imperfection density
grain orientation
grain boundaries
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Temperature data

Points represent
thermistor temperature
measurements.
Dotted lines assume
uniform conductivity
between the sensors.

Each experiment yields a thermal conductivity estimated by

k = − q′′

dT/dx
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Thermal Conductivity Estimation

To make simultaneous use of all temperature measurements, an
alternate model to estimate conductivity is proposed.

A set of m
temperatures T̄p are
specified
Thermal conductivity k̂p
is estimated at T̄p
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Fourier Law is,

q′′ = −kavg
dT
dx

(1)

Assuming a linear variation of kavg with respect to T ,

kavg = k̂p +


(

Ti,j +Ti,j+1
2

)
− T̄p

T̄p+1 − T̄p

 (k̂p+1 − k̂p) (2)

where Ti,j is the measured temperature for i th experiment and j th

sensor location, and is assumed to be known and error-less. Ti,j+1 is
the temperature at sensor location j + 1, which is to be estimated.

Hence, Eq. 1 can be re-written as

q′′i =
Ti,j − Ti,j+1

dx

k̂p +

(
Ti,j +Ti,j+1

2

)
− T̄p

T̄p+1 − T̄p
(k̂p+1 − k̂p)

 (3)
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Re-arranging Eq. 3, gives a quadratic in Ti,j+1

A(Ti,j+1)2 + B(Ti,j+1) + C = 0 (4)

where,

A =
k̂p+1−k̂p

2(T̄p+1−T̄p)
B = k̂p −

T̄p(k̂p+1−k̂p)

T̄p+1−T̄p

C = q′′i dx − Ti,j k̂p −
Ti,j(Ti,j − 2T̄i)(k̂p+1 − k̂p)

2(T̄p+1 − T̄p)

The solution for Eq. 4 is

Ti,j+1 =
−B ±

√
B2 − 4AC
2A
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Ti,j may also be written as a Taylor series expansion, i.e.

T (z+1)
i,j = T (z)

i,j

∣∣∣
k̂ (z)

1 , k̂ (z)
2 ,..., k̂ (z)

m

(5)

+
∂T (z)

i,j

∂k̂1

∣∣∣∣∣∣
k̂ (z)

2 , k̂ (z)
3 ,..., k̂ (z)

m

(
k̂ (z+1)

1 − k̂ (z)
1

)

+
∂T (z)

i,j

∂k̂2

∣∣∣∣∣∣
k̂ (z)

1 , k̂ (z)
3 ,..., k̂ (z)

m

(
k̂ (z+1)

2 − k̂ (z)
2

)

+ . . .+
∂T (z)

i,j

∂k̂m

∣∣∣∣∣∣
k̂ (z)

1 , k̂ (z)
2 ,..., k̂ (z)

m−1

(
k̂ (z+1)

m − k̂ (z)
m

)
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The sensitivity coefficients are determined numerically by

∂Ti,j(x , k̂
(z)
1 , . . . , k̂ (z)

m )

∂k̂m
≈

Ti,j(x , k̂
(z)
1 , . . . ,d ∗ k̂ (z)

m )− Ti,j(x , k̂
(z)
1 , . . . , k̂ (z)

m )

d ∗ k̂ (z)
m − k̂ (z)

m
(6)

where d = 1.0001, as an example.
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The sum of squares with Tikhonov regularization is

ST =
r∑

i=1

∑̀
j=1

(Yi,j − T (z+1)
i,j )2 + αT

m∑
p=1

(k̂ (z+1)
p+1 − k̂ (z+1)

p )2 (7)

Partially differentiating with respect to each kp and setting equal to
zero,

∂ST

∂k̂p
= −2

r∑
i=1

∑̀
j=1

(Yi,j − T (z+1)
i,j )

∂T (z+1)
i,j

∂kp

− 2αT ∆k̂ (z+1)
p = 0 (8)

where

∆k̂ (z+1)
p =


k̂ (z+1)

p − k̂ (z+1)
p+1 if p = 1

k̂ (z+1)
p−1 − 2k̂ (z+1)

p + k̂ (z+1)
p+1 if 1 < p < m

k̂ (z+1)
p−1 − k̂ (z+1)

p if p = m
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Linearizing Eq. 8 in terms of the corrections in the (z + 1)st iteration
gives

r∑
i=1

∑̀
j=1

Yi,j − T (z)
i,j −

m+1∑
s=1

∂T (z)
i,j

∂k̂s
∆k̂ (z)

s

 ∂T (z)
i,j

∂k̂p
+ 2αT ∆k̂ (z+1)

p = 0 (9)

where
∆k̂ (z)

s = k̂ (z+1)
s − k̂ (z)

s

and ∆k̂ (z+1)
p as defined before.

A set of simultaneous algebraic equations for p = 1,2, . . . ,m is
constructed from Eq. 9 and solved for the (z + 1)st iteration for the
thermal conductivity parameters.
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Comparison of Estimates

k̂p estimates compare well with k
Tikhonov regularization parameter α = 10−8 for this estimation
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Discussion

New method provides a means for describing complex behavior
Agrees well with point-wise estimation of k
Readily expandable to include more T̄p and k̂p

Tikhonov parameter is small, as expected for small number of
parameters
Could be used for other phenomena that have no known physical
model
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